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Abstract. We use Monte Carlo methods to investigate the asymptotic behaviour of the number
and mean-square radius of gyration of polygons in the simple cubic lattice with fixed knot type.
Let pn(τ) be the number ofn-edge polygons of a fixed knot typeτ in the cubic lattice, and
let 〈R2

n(τ )〉 be the mean square radius of gyration of all the polygons counted bypn(τ). If we
assume thatpn(τ) ∼ nα(τ)−3µ(τ)n, whereµ(τ) is the growth constant of polygons of knot type
τ , andα(τ) is the entropic exponent of polygons of knot typeτ , then our numerical data are
consistent with the relationα(τ) = α(∅) + Nf , where∅ is the unknot andNf is the number
of prime factors of the knotτ . If we assume that〈R2

n(τ )〉 ∼ Aν(τ)n
2ν(τ), then our data are

consistent with bothAν(τ) andν(τ) being independent ofτ . These results support the claims
made in Janse van Rensburg and Whittington (1991aJ. Phys. A: Math. Gen.24 3935) and
Orlandiniet al (1996J. Phys. A: Math. Gen.29 L299, 1998Topology and Geometry in Polymer
Science (IMA Volumes in Mathematics and its Applications)(Berlin: Springer)).

1. Introduction

The problem of knotting in long ring polymers was first discussed by Frisch and Wasserman
(1961) and Delbruck (1962). They conjectured that the knot probability was unity in the
limit of infinitely long ring polymers, and this has become known as the Frisch–Wasserman–
Delbruck conjecture. The conjecture has been settled in the affirmative for a lattice model
(Sumners and Whittington 1988, Pippenger 1989) and for some continuum models (Diao
et al 1994). There has also been a considerable amount of numerical work on this problem,
attempting to estimate the rate of increase of the knot probability with length (Vologodskii
et al 1974, Michels and Wiegel 1984, 1986, Janse van Rensburg and Whittington 1990,
Koniaris and Muthukumar 1991, Deguchi and Tsurusaki 1994). The problem has also been
investigated experimentally for circular DNA molecules (Shaw and Wang 1993, Rybenkov
et al 1993).

A related (and more delicate) problem which has only been addressed more recently
is the relative frequency of occurrence of different knots. In the DNA literature there
is considerable interest (Wasserman and Cozzarelli 1991, Wassermanet al 1985) in the
properties of circular DNA molecules with fixed knot type since the knots produced by the
action of certain enzymes on unknotted circular DNA can give useful information about
the mechanism of enzyme action (Sumners 1995). This suggests a number of interesting
questions about ring polymers with fixed knot type. For instance, how likely is a ring
polymer to be of knot typeτ1 compared with being of knot typeτ2? Some preliminary
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numerical work has appeared on this question both for a lattice model (Orlandiniet al 1996)
and for a continuum model (Deguchi and Tsurusaki 1997). In a similar way one can ask
for the mean dimensions (e.g. the mean square radius of gyration) of ring polymers as a
function of their knot type (Janse van Rensburg and Whittington 1991a, Quake 1994). In
this paper we use Monte Carlo methods to address both of these questions.

A polygonis an embedding of the circle graph inZ3. We are interested in the number
pn of polygons of lengthn (i.e. composed ofn lattice edges) where two polygons are
considered distinct if they cannot be superimposed by translation. For instance,p4 = 3 and
p6 = 22. Similarly we can definepn(τ) to be the number ofn-edge polygons with knot
type τ . At present there are not many rigorous results for knotted polygons. It is known
that all polygons withn < 24 are unknotted and that all non-trivial knotted polygons with
24 edges are trefoils (Diao 1992). Sumners and Whittington (1988) and Pippenger (1989)
showed that

lim
n→∞ n

−1 logpn(∅) ≡ κ0 < lim
n→∞ n

−1 logpn ≡ κ (1.1)

where∅ is the unknot, so that unknots are (asymptotically) exponentially rare in the set of
all polygons. A weaker result holds for polygons of knot typeτ (Soteroset al 1992):

lim inf
n→∞ n−1 logpn(τ) = kτ 6 lim sup

n→∞
n−1 logpn(τ) = κτ < κ. (1.2)

It is not known thatkτ = κτ for any knot type (other than the unknot), and generally, it
is not known how the connective constantsκτ are related to one another. Ifτ1 is a factor
knot of the (composite) knotτ , then concatenation of two polygons (one of knot typeτ1,
and the other of knot typeτ \ τ1) will show thatκτ1 6 kτ 6 κτ (Whittington 1992). Since
the unknot is trivially a factor of any knot, concatenation of an unknot and a polygon of
knot typeτ proves that

kτ > κ0. (1.3)

An important open question is whetherkτ is dependent on the knot type.
The identification of polygons as a limit of a lattice O(N) model suggests that the

asymptotic behaviour ofpn is given by

pn = Anα−3µn(1+ Bn−1 + Cn−1+ o(n−1)) (1.4)

whereµ = eκ and κ is lattice dependent. On the other hand, the exponentsα and1 are
critical exponentsand are believed to be universal for lattices of the same dimension.

The mean square radius of gyration〈R2
n〉 of all polygons counted bypn is expected to

have the asymptotic form

〈R2
n〉 = Aνn2ν(1+ Bνn−1 + Cνn−1+ o(n−1)) (1.5)

where the pedixν on the coefficientsAν , Bν andCν of equation (1.5) distinguishes these
from the coefficients in equation (1.4). The exponentsν and1 have been estimated to have
values

ν = 0.5882± 0.0010

1 = 0.478± 0.010
(1.6)

using field theoretic techniques (Guida and Zinn-Justin 1997, see also Le Guillou and Zinn-
Justin 1980, 1989), whereas the best available numerical estimates for the self-avoiding
walk are by Liet al (1995):

ν = 0.5877± 0.0006

1 = 0.56± 0.03.
(1.7)
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Figure 1. The sphereS separates the knotted polygon
into two arcs, one of which will be knotted if it is closed
by an arc on the sphere.

The scaling relations above are not rigorous, but have reasonably firm theoretical
foundations, and there are numerous calculations which support equations (1.4) and (1.5).
They are generally accepted as the correct approximations topn and 〈R2

n〉. Polygons of
fixed knot type do not have similar connections to the O(N) model and we do not know
the corresponding asymptotic expressions. Nevertheless, we note thatpn(τ) will grow
exponentially withn, and thatDn2/3 6 〈R2

n(τ )〉 6 n2, so that〈R2
n(τ )〉 should increase as a

power ofn (with some corrections to scaling). Consequently it seems reasonable to assume
that

pn(τ) = A(τ)nα(τ)−3µ(τ)n
(

1+ B(τ)
n1(τ)

+ · · ·
)
. (1.8)

If this form is indeed correct then (1.2) implies thatµ(τ) < µ for every τ . For the mean
square radius of gyration, we similarly assume that

〈R2
n(τ )〉 = Aν(τ)n2ν(τ)[1+ Bν(τ)n−1(τ) + Cν(τ)n−1+ o(n−1)]. (1.9)

In order to understand better the assumptions in equations (1.8) and (1.9), consider the
following model of a polygonω which is a prime knot. LetS be a geometric sphere which
intersectsω in exactly two points. ThenS dividesω into two segments, each of which
can be closed by a curve on the sphere into an embedded circle. One of these segments,
closed by a curve on the sphere, is a knot. Let the total length of this segment bemτ ,
and assume thatω hasn edges. We illustrate this situation in figure 1. DefineMτ to be
the infimum ofmτ over all possible intersections with geometric spheres which cutω in
exactly two points. Definenτ to be the expected value ofMτ taken uniformly over all
polygons of knot typeτ . We assume now that the mean square radius of gyration has the
asymptotic formula〈R2

n(τ )〉 ∼ Aν(τ)n2ντ . There are two possibilities: first we may have
nτ ∼ n (assume thatnτ/n → γ for some constantγ ), or alternatively,nτ = o(n). If
nτ ∼ n, then the length of the segment ofω insideS grows, on average, proportionally to
n, and the average radius ofS grows at least as fast asDn1/3 whereD > 0, and at most
as fast as O(nν). If 〈R2

n(ω)〉1/2 grows faster than the average radius ofS, thenω will start
to assume the character of an unknotted polygon of length(1− γ )n, and we observe that
ν(∅) = ν(τ), while Aν(τ) = (1− γ )Aν(∅) < Aν(∅). If 〈R2

n(ω)〉1/2 grows at the same rate
as the average radius ofS (this may be the case ifγ = 1) then it is not possible to derive a
relationship between the critical exponents or amplitudes. On the other hand, if we consider
the case thatnτ = o(n), thenν(τ) = ν(∅) by the same arguments as in the case above. In
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addition,〈R2
n(τ )〉 ≈ Aν(τ)(n−nτ )2ν(∅) ≈ Aν(∅)n2ν(∅)(1+λnτ/n+· · ·). Thus, ifnτ = o(n),

then the knot has no effect on the amplitude (Aν(τ) = Aν) and the effect of the knot only
appears as corrections to the scaling. For example, ifnτ ∼ √n, then a correction term of
the form λ/

√
n will appear, and so on. There is conflicting evidence on the dependence

of Aν(τ) on τ . It was first observed (Janse van Rensburg and Whittington 1991a) that
Aν(∅) ≈ Aν(τ) for a variety of knots. On the other hand, simulations by Quake seemed
to show the opposite: a strong dependence ofAν(τ) on τ (Quake 1994, 1995). These
arguments also have implications for the entropic exponent: Indeed, ifnτ = o(n), then in
the largen limit, the ‘average’ knotted polygon looks like an unknotted polygon with a
small sphere containing a knotted arc attached to it, and where its knot type is determined.
We would expect that there exists a positive numberγ such that we can place this sphere
and its contents atγ n places along the polygon, so thatpn(τ) ∼ npn(∅). Substitution of
equation (1.8) givesα(τ) = α(∅) + 1, if τ is a prime knot. This argument generalizes to
cases whereτ is a knot withNf prime factors, and suggests that

α(τ) = α(∅)+Nf . (1.10)

2. Monte Carlo approach

In this paper we aim to use high-quality Monte Carlo data to study the dependence of
critical exponents and amplitudes of knotted polygons on knot types. In particular, we
wish to test the relation in equation (1.10), and the dependence ofν(τ) andAν(τ) on τ .
We shall sample along Markov chains in the state space of polygons in the cubic lattice
using the BFACF algorithm (Berg and Foester 1981, Aragao de Carvalho and Caracciolo
1983, Aragao de Carvalhoet al 1983). This is a grand canonical algorithm which samples
along a Markov chain in the state space of polygons (not of fixed length) in a single
run. The algorithm has a parameter (the step fugacity) which controls the mean length
of polygons to be sampled. It is known that this algorithm is irreducible on classes of
polygons with the same knot typeτ (Janse van Rensburg and Whittington 1991b). This
means that if the initial state is a polygon of a particular knot type, then only polygons of
that knot type will appear in the sample and all such polygons have a non-zero probability of
occurrence. This provides a very convenient way to sample polygons with a fixed knot type,
even though the long autocorrelations of this algorithm makes it somewhat inefficient in
many applications. To improve this situation we implement it with multiple Markov chain
sampling (Geyer 1991, Geyer and Thompson 1994) by sampling along several Markov
chains in parallel at different values of the step fugacity. States along the parallel Markov
chains are swapped using a swapping probability which is chosen such that the overall
invariant limit distribution of the composite chain is equal to the product of the marginal
distributions of the individual Markov chains. As a result, the time series for the individual
Markov chains can be analysed as though they had been obtained independently. The
swapping procedure dramatically decreases the correlations within each Markov chain, and
has little overhead since we are interested in sampling data at a number of different values
of the step fugacity. (For a detailed discussion of the method and its implementation for a
problem in statistical mechanics, see Tesiet al (1996) and Orlandini (1998).) The invariant
limit distribution of the algorithm is

πτ0(ω) =
1

8
|ω|qK |ω|χ(τ(ω), τ0) (2.1)

whereq andK are parameters which can be chosen to optimize the sampling,|ω| is the
number of edges in the polygonω, τ(ω) is the knot type ofω, χ is an indicator function
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which is 1 if ω has the same knot type (τ0) as the first polygon in the realization of the
Markov chain, and zero otherwise.8 is a normalization factor. In this paper we useq = 3
in equation(2.1), which biases the sampling towards longer polygons. Each run corresponds
to a multiple Markov chain implementation of the BFACF algorithm for fixed knot type,
with 18 chains in parallel each sampled in increments of 2× 105 BFACF iterations. Our
data were obtained from 90 000 samples collected for each chain in the case of the unknot,
resulting in a data-set of size 1.62×106, taken over a total of 3.24×1011 attempted BFACF
moves. For the knots 31 and 41 we collected 150 000 sample points for each chain, and for
the knots 62, 31#31 and 31#41, 100 000. The entire number of attempted BFACF moves for
the whole project was 2.5× 1012 iterations, consuming 15 months of CPU time on a SUN
Ultrasparc workstation.

3. The entropic exponents

In this section we reconsider the entropic exponentα(τ) for knotted polygons. Our main
goal is to improve the results published previously (Orlandiniet al 1996). The entropic
exponent was also the subject of studies by Deguchi and Tsurasaki (1993, 1994, 1997). The
mean length〈n(τ)〉 of polygons of knot typeτ sampled atq andK can be shown to be
given approximately by

〈n(τ)〉 ≈ [α(τ)+ q − 2]µ(τ)K

1−Kµ(τ)
(

1− B(τ)1(τ)[1−Kµ(τ)]
1(τ)

α(τ )+ q − 2

)
. (3.1)

µ(τ) can be estimated by considering the asymptotic behaviour of〈n(τ)〉 as z = (1 −
µ(τ)K) → 0 (or K → 1/µ(τ)). In particular, to leading order, we can use (3.1) to
approximate 1/〈n(τ)〉:

〈n(τ)〉−1 ≈ 1−Kµ(τ)
[α(τ)+ q − 2]µ(τ)K

= 1

(α + q − 2)µ(τ)K
− 1

α + q − 2
. (3.2)

and we see that an estimate ofµ(τ) can be obtained by extrapolating to that value ofK for
which 1/〈n(τ)〉 is zero.

In figure 2 we plot〈n(τ)〉−1 as a function of 1/K for runs carried out withq = 3 for
the unknot, the trefoil and the composite knot 31#41. We note that as the complexity of the
knot increases, the corrections to the linear scaling (3.2) become more and more important,
but for K sufficiently close to the critical value (Kc(τ) = µ(τ)−1) linear behaviour is
obtained (in figure 3 we enlarge the area close to the intersection in figure 2: the linear
behaviour is clearly recovered). By extrapolating the data in figure 3, using a linear fit with
equation (3.2), we obtain the following estimates:

µ(∅) = 4.6852

µ(31) = 4.6832

µ(41) = 4.6833

µ(62) = 4.6844

µ(31#31) = 4.6800

µ(31#41) = 4.6841.

(3.3)

These values coincide to the second decimal place, and it seems reasonable to assume that
they are indeed all equal. In fact, since we measured them from completely independent
simulations, we can take their average to estimate the growth constant of polygons of a
fixed knot type: we obtainµ(∅) = µ(τ) = 4.6836± 0.0038 (95% confidence interval)
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Figure 2. Plot of 〈n(τ)〉−1 as a function of 1/K for the unknot (•), the trefoil (◦) and the
composite knot 31#41 (M).

Figure 3. This graph focuses on the area where the data in figure 2 approach the critical value
of K.

for any knot typeτ . This estimate ofµ(τ) is remarkably close to the best available
estimates of the growth constant for the self-avoiding walk. Guttmann (1989) estimated
µ = 4.683 93± 0.000 02 using exact enumeration and series analysis. Our estimate is
completely consistent with this. Observe that knotted polygons are extremely rare in
polygons of lengths up to thousands of edges (see for example Janse van Rensburg and
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Figure 4. Plot of the ratioρ(τ1, τ2) = 〈n(τ1)〉/〈n(τ2)〉 versus(1−Kµ(∅))1/2 for τ1 = 31 and
τ2 = ∅ (•), τ1 = 41 and τ2 = ∅ (�), τ1 = 62 and τ2 = ∅ (♦). The extrapolation of the
data indicates that they intercept is somewhere between 1.6 and 1.8. This is consistent with
α(τ) = α(∅)+ 1 if τ is a prime knot.

Whittington 1990), so that knotted conformations have little or no effect on the estimated
value ofµ when this is computed over all polygon conformations with less than 103 or 104

edges. (In series enumerations of polygons onZ3 by Guttmann (1989) there are precisely no
knots encountered.) Consequently, we do not expect to see a numerical difference between
the estimates ofµ(∅) andµ. If we then take into account the fact thatµ(τ) should be
between these values, then the results above are perhaps not surprising. On the other hand,
the estimates in equations (3.3) are obtained by extrapolating our data obtainedonly from
polygons of fixed knot type.

We analyse the dependence ofα(τ) on τ by taking ratios of equation (3.1) for different
knot types. If we assume that1 = min{1(τ1),1(τ2)}, then we obtain for the first two
terms in the expansion,

〈n(τ1)〉
〈n(τ2)〉 ≈

α(τ1)+ q − 2

α(τ2)+ q − 2
[1+ c(1−Kµ(∅))1]. (3.4)

Thus, a plot of〈n(τ1)〉/〈n(τ2)〉 against(1− Kµ(∅))1 should give a curve which will be
linear forK close to 1/µ(∅) and have intercept [α(τ1)+q−2]/[α(τ2)+q−2]. For the set of
all polygons, the confluent exponent1 has a value close to12 (see equations (1.6) and (1.7)),
and a plot of the ratio (3.4) against

√
1− µ(∅)K supports linear dependence (figure 4). In

this case, we setτ2 = ∅, while we tookτ1 equal to 31, 41 and 62, respectively. It appears
that the three sets of points all approach a common value as

√
1− µ(∅)K approaches

zero. In order to estimate the limiting value, we could fit the ratio in equation (3.4) to a
two-parameter expression of the form

ρ(τ1, τ2) = 〈n(τ1)〉
〈n(τ2)〉 =

α(τ1)+ q − 2

α(τ2)+ q − 2
+ c1(1−Kµ(∅))1. (3.5)

However, the situation is not quite this simple: we are confronted with competing
influences in our data. In the first case we note that confidence intervals are small for small
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values ofK in figure 4; this is the region where we believe that corrections to equation (3.5)
are important. On the other hand, for larger values ofK, we have larger error bars, but it
is in this region where equation (3.5) should be a good approximation. Thus, a naive fit to
all the data points might produce values forρ(τ1, τ2) which are determined by points with
small error bars in a range ofK values where equation (3.5) isnot a good approximation!
In order to avoid this possibility, we took the four points at the largest values ofK in each
plot to extrapolate to the intercept. Our best estimates from the data in figure 4 give

ρ(31, ∅) = 1.69± 0.11

ρ(41, ∅) = 1.67± 0.11

ρ(62, ∅) = 1.75± 0.05

(3.6)

where the error bars are 95% confidence intervals. These values are all consistent. By the
argument accompanying figure 1 we note that if the smallest geometric ball containing
the knot grows slower than linearly inn, then α(τ) = α(∅) + Nf , whereNf is the
number of prime factors inτ . If we assume thatα(∅) = 0.237± 0.004 (obtained by
using the hyperscaling relation dν = 2 − α, and the best available numerical estimate
of ν = 0.5877± 0.0006 (Li et al 1995)), then we findρ(31, ∅) ≈ 1.81. On the other
hand, we also estimated the value ofα(∅) from our data from equation (3.2) to obtain
α(∅) = 0.27± 0.02, with the result thatρ(31, ∅) ≈ 1.79. These results are consistent with
our estimates in equation (3.6), and we take this as support for the notion that the length of
knotted arc in the sphere in figure 1 grows slower thann.

We present more evidence by demonstrating that within numerical tolerancesα(31) =
α(41), andα(31#31) = α(31#41) in figure 5. Best fits to the data give

ρ(31, 41) = 1.01± 0.11

ρ(31#31, 31#41) = 0.928± 0.070.
(3.7)

In figure 6 we plot ratios to estimateρ(τ1, τ2) with τ1 a composite knot andτ2 a prime knot.
In all these cases we compute from equation (1.10) thatρ(τ1, τ2) ≈ 1.4, and we expect that
the data in figure 6 should reflect this value. We obtain

ρ(31#31, 31) = 1.25± 0.16

ρ(31#31, 41) = 1.38± 0.06

ρ(31#41, 31) = 1.27± 0.02

ρ(31#41, 41) = 1.39± 0.10.

(3.8)

With the exception of the third value, these are all consistent with a value of 1.4. Finally,
we summarize the results of this section as follows.

(i) Our results are consistent with the number of polygons with fixed knot type growing
at the same exponential rate, independent of knot type.

(ii) All prime knots that we have examined appear to have the same entropic exponent,
α(τ).

(iii) Both composite knots with two factors (31#31 and 31#41) that we examined appear
to have the same entropic exponent.

(iv) It is clear that prime knots do not have the same exponent as the unknot, and knots
with two factors do not have the same exponent as prime knots.

(v) The numerical estimates are consistent with equation (1.10).
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Figure 5. Plot of ρ(τ1, τ2) against(1− Kµ(∅))1/2 for τ1 = 41 and τ2 = 31 (•), τ1 = 31#31

andτ2 = 31#41 (�). These data points seem to approach 1 asK approaches its critical value.
This suggests that polygons of knot types 31 and 41, and 31#31 and 31#41 respectively, have
the same entropic exponent.

4. Mean size of knotted polygons

In this section we consider the mean sizes of knotted polygons and estimate the metric
exponent of knots as well as the amplitudes of the mean square radii of gyration. This
topic was first addressed in Janse van Rensburg and Whittington (1991a), where it was
claimed that both the amplitude, and the metric exponent, are independent of the knot type
of the polygon. Subsequent work by Quake (1994, 1995) agreed that the metric exponent
is independent of the knot type, but indicated a dependence of the amplitude of the mean
square radius of gyration on the knot type. We address these issues again, using the very
large data sets generated by our simulations. The basic picture was presented in figure 1,
where we argued that in then→∞ limit the knot will be hidden in a small ball, and will
be invisible in quantities such as the mean square radius of gyration. This point of view
is supported by the results in the previous section. From another point of view, consider
a small knot, and imagine the change in its conformation as its edges are multiplied. On
entropic grounds, it seems to us to be more likely that the knot will expel a single loop
which will acquire unknotted polygon statistics in the largen limit, rather than a number
of loops which must interact with each other. (This argument can be made more precise if
we consider a Hopf-link or a figure-of-eight graph embedded in the cubic lattice. Consider
for example a figure-of-eight graph, which consists of two polygons which are attached
to one another at a single vertex, and which are otherwise self-avoiding (Whittingonet al
1977, Guttmann and Whittington 1978). If there aren edges distributed among the two
polygons withk edges in one polygon, and(n − k) in the other, then the total number of
conformations of the figure-of-eight isS(n, k) = k(n− k)pkpn−k − χ(n, k), whereχ(n, k)
is the number of conformations where the two polygons intersect one another. Observe



5962 E Orlandini et al

Figure 6. The ratioρ(τ1, τ2) against(1−Kµ(∅))1/2 for τ1 = 31#31 andτ2 = 31 (♦), τ1 = 31#41

andτ2 = 31 (�), τ1 = 31#31 andτ2 = 41 (×), τ1 = 31#41 andτ2 = 41 (•). These data points
converge to somewhere between 1.3 and 1.4 which seems to indicate that the entropic exponent
satisfies the relationα(τ1#τ2) = α(τ1)+ 1= α(τ2)+ 1, whereτ1 andτ2 are prime knot types.

that for fixedn, χ(n, k) increases ask approachesn/2, and that the productpkpn−k is a
minimum if k = n/2 (this is seen by noting thatα in equation (1.4) is approximately14).
Thus,S(n, k) is a maximum ifk = 4, or k = n − 4. In other words, figure-of-eights are
dominated by those with one large and one small circle. This argument also applies to the
Hopf-link.

4.1. The metric exponent

We postulated a basic scaling form for the mean square radius of gyration in equation (1.9).
In order to estimateν from our data, we compute the expected value of the mean square
radius of gyration,R2

τ (K, q), over polygons sampled from the distribution in equation (2.1).
This gives the expression

R2
τ (K, q) =

1

Gτ(K, q)

∑
〈R2

n〉nqpn(τ )Kn. (4.1)

If the assumed scaling form for〈R2
n〉 is substituted into equation (4.1), then after some

simplification, we find the following approximation forR2
τ (K, q):

R2
τ (K, q) ' h(α, ν)z−2ν(τ)(1+ f (α, ν,1)z1 + g(α, ν)z+ · · ·) (4.2)

wherez = 1−Kµ(τ). The leading term in equation (3.1) can be used to eliminatez in the
above; this produces the approximation:

R2
τ (K, q) ' h′(α, ν)〈n〉2ν(τ)(1+ f ′(α, ν,1)〈n〉−1 + g′(α, ν)〈n〉−1+ · · ·) (4.3)

where we now have a relation betweenR2
τ (K, q) and 〈n〉. A log–log fit of our data to

equation (4.3), whereK takes a different value for each chain in our multiple Markov chain
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Monte Carlo, can be used to estimateν for each knot type. Our best estimates are

ν(∅) = 0.588± 0.008

ν(31) = 0.599± 0.008

ν(41) = 0.603± 0.010

ν(62) = 0.586± 0.010

ν(31#31) = 0.604± 0.020

ν(31#41) = 0.596± 0.012.

(4.4)

Within the stated error bars, the above are all consistent with the best estimates ofν for
polygons and self-avoiding walks (see equations (1.6) and (1.7)). These numbers also
confirm the data in Janse van Rensburg and Whittington (1991a) and Quake (1995), and
there seems to be no reason to suspect that, from a numerical point of view, there is a
dependence ofν on the knot types. By averaging these results we can obtain an estimate
of ν for polygons of fixed knot type, givingν = 0.596± 0.012.

4.2. The amplitude of the mean square radius of gyration

In this section we consider the much more difficult issue of the behaviour of the amplitude
of the mean square radius of gyration for polygons of different knot types. In this analysis,
we assume that the metric exponent is independent of the knot type of the polygons, and we
take its field theoretic value as the best possible estimate for its true value. We can expose
the amplitude in equation (1.9) by division byn2ν to find the equation

〈R2
n〉/n2ν = Aν(τ)[1+ Bν(τ)n−1 + Cν(τ)n−1+ o(n−1)]. (4.5)

We plot our data in scatter plots in figure 7 to examine the behaviour of〈R2
n〉/n2ν as a

function of n−1, where we assume that1 = 1
2. The data should lie on curves which are,

up to second order, parabolic inn−1. The deterioration in the data at largen values is
due to poor statistics. Similar plots were presented in the studies by Janse van Rensburg
and Whittington (1991a) and Quake (1995), but the data in figure 7 include measurements
from polygons much longer than in those previous studies. Equation (4.5) indicates that we
should be able to extrapolateAν(τ) from our data by a three-parameter linear fit. Since these
fits assume that all the data points are independent, we multiply the resulting confidence
intervals by

√
2T , whereT is the autocorrelation time of the underlying algorithm. Our

best estimates are

Aν(∅) = 0.103± 0.028

Aν(31) = 0.1032± 0.0016

Aν(41) = 0.0967± 0.0022

Aν(62) = 0.0842± 0.0012

Aν(31#31) = 0.0889± 0.0042

Aν(31#41) = 0.089± 0.012.

(4.6)

These estimates seem consistent, and if we keep in mind that there is an unknown systematic
error present in the data (due to corrections to scaling that we did not control for, and to
poor statistics for large values ofn), then we conclude that these estimates are evidence
that the amplitudes are independent of the knot type of the polygons. Indeed, the average
of these results is 0.0942, and all the values in equation (4.6), with the exception of the
knots 31 and 62, include the average within one standard deviation. Notice that there is also
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Figure 7. Scatter plot of〈R2
n〉/n2ν againstn−1. The data points from top to bottom correspond

respectively to the unknot, 31, 41 and 62. Extrapolations of these data points indicate that they
might approach the same value asn→∞. This suggests that the amplitude of the mean square
radius of gyration of knotted polygons are independent of their knot type.

no systematic change in the estimated amplitudes with increasing crossing number in the
knots, in contrast to the claim in the study by Quake (1995). There, it was claimed that the
amplitude systematically decreases with increasing crossing number, and this observation
was used as an argument supporting the notion that the amplitude is indeed dependent on
the knot type. On the other hand, examination of the scatter plot in figure 7 shows that
our data only slowly become asymptotic with increasing values ofn, especially for the
more complicated knots in our data. Quake’s (1995) study included data sampled from the
knots 101 and 201, which will be even less asymptotic than the data presented in figure 7.
Note that the value of1 is close to 1

2, and that further simulations to sample data which
will extrapolate further in figure 7 will require the generation of very long polygons. This
remains a difficult challenge.

The ratioη(τ1, τ2) = 〈R2
n(τ1)〉/〈R2

n(τ2)〉 can also be used to study amplitude ratios. In
particular, if the amplitudes are independent of knot type, thenη(τ1, τ2)→ 1 for any pair
of knot types. In figure 8 we plot our estimates ofη(τ1, τ2) for the knots∅, 31 and 41. All
these points seem to approach 1 in the scaling limit, and we can fit them to the function
A+Bn−1+C/n to estimate the value ofA, which should give us an estimate forη(τ1, τ2).
Our best estimates are

η(31, ∅) = 1.044± 0.044

η(41, ∅) = 1.005± 0.028

η(41, 31) = 0.974± 0.026.

(4.7)
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Figure 8. The ratioη(τ1, τ2) = 〈R2
n(τ1)〉/〈R2

n(τ2)〉 versusn−1 for the following pairs of knots:
τ1 = 31, τ2 = ∅; τ1 = 41, τ2 = ∅; τ1 = 41, τ2 = 31. All the data points seem to approach 1 as
n→∞.

In addition to these, we also considered the ratios for the unknot, and the composite knots
31#31 and 31#41. In these cases we obtain

η(31#31, ∅) = 0.919± 0.056

η(31#41, ∅) = 0.917± 0.092

η(31#41, 31#31) = 0.91± 0.11.

(4.8)

These results are consistent with the idea that the amplitude ratios are independent of
knot type.

5. Conclusions

We have used the BFACF Monte Carlo algorithm coupled with a multiple Markov chain
approach to investigate two questions about polygons on the simple cubic latticeZ3 with
fixed knot type. In section 3 we investigated the number,pn(τ), of polygons with knot
type τ as a function ofn, the number of edges in the polygon. We interpreted our results
assuming the asymptotic form

pn(τ) ∼ nα(τ)−3µ(τ)n (5.1)

where the symbol∼ indicates the behaviour for largen with τ fixed. Our results indicate
that µ(τ) is independent of knot type and thatα(τ) is the same for all non-trivial prime
knots. If τ is prime it seems likely thatα(τ) = α(∅)+ 1 where∅ represents the unknot. If
τ is composite withNf prime factors then our results suggest thatα(τ) = α(∅)+Nf .

We have also examined the behaviour of the mean-square radius of gyration of polygons
for various knot types and our results are consistent with both the exponent and the amplitude
being independent of knot type, suggesting that large polygons behave like unknots with one
or more relatively small knotted ball pairs inserted somewhere along their length. This is
in agreement with the conclusions of our earlier work, based on much less extensive Monte
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Carlo calculations, but disagrees with the conclusions of Quake (1995). Quake interpreted
his results as suggesting that the amplitude does depend on the complexity of the knot and
he argued for a different scenario in which there is not a relatively localized knotted ball pair
in the polygon. It may be that, for the more complex knots considered by Quake, correction
to scaling terms are more important and one needs to collect data at much larger values of
n in order to reach the asymptotic regime. This is our view, but there is considerable scope
for more study.
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